Lateral Vibration of Two Axially Translating Beams Interconnected by Winkler Foundation1

نویسندگان

  • Mohamed Gaith
  • Sinan Müftü
چکیده

Transverse vibration of two axially moving beams connected by a Winkler elastic foundation is analyzed analytically. The system is a model of paper and paper-cloth (wire-screen) used in paper making. The two beams are tensioned, translating axially with a common constant velocity, simply supported at their ends, and of different materials and geometry. Due to the effect of translation, the dynamics of the system displays gyroscopic motion. The EulerBernoulli beam theory is used to model the deflections, and the governing equations are expressed in the canonical state form. The natural frequencies and associated mode shapes are obtained. It is found that the natural frequencies of the system are composed of two infinite sets describing in-phase and out-of-phase vibrations. In case the beams are identical, these modes become synchronous and asynchronous, respectively. Divergence instability occurs at the critical velocity; and, the frequency-velocity relationship is similar to that of a single traveling beam. The effects of the mass, flexural rigidity, and axial tension ratios of the two beams, as well as the effects of the elastic foundation stiffness are investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transverse Vibration of Two Axially Moving Beams Connected by an Elastic Foundation

Transverse vibration of two axially moving beams connected by a Winkler elastic foundation is analyzed analytically. The system is a model of paper and paper-cloth (wire-screen) used in paper making. The two beams are tensioned, translating axially with a common constant velocity, simply supported at their ends, and of different materials and geometry. Due to the effect of translation, the dyna...

متن کامل

Vibration characteristics of axially loaded tapered Timoshenko beams made of functionally graded materials by the power series method

Abstract: In the present article, a semi-analytical technique to investigate free bending vibration behavior of axially functionally graded non-prismatic Timoshenko beam subjected to a point force at both ends is developed based on the power series expansions. The beam is assumed to be made of linear elastic and isotropic material with constant Poisson ratio. Material properties including the ...

متن کامل

On the Analysis of FGM Beams: FEM with Innovative Element

This paper aims at presenting a new efficient element for free vibration and instability analysis of Axially Functionally Graded Materials (FGMs) non-prismatic beams using Finite Element Method (FEM). Using concept of Basic Displacement Functions (BDFs), two- node element extends  to three-node element for obtaining much more exact results using FEM. First, BDFs are introduced and computed usin...

متن کامل

Dynamic response of clamped axially moving beams: Integral transform solution

The generalized integral transform technique (GITT) is employed to obtain a hybrid analyt-ical–numerical solution for dynamic response of clamped axially moving beams. The use of the GITT approach in the analysis of the transverse vibration equation leads to a coupled system of second order differential equations in the dimensionless temporal variable. The resulting transformed ODE system is th...

متن کامل

A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006